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TRANSFER EQUATIONS FOR A GREY-BODY AND STATIONARY SHOCK 
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Exact relativistic transfer equations for components of the energy 
momentum tensor of the radiation are obtained on the basis of the 
relativisticatly covariant radiation transfer equation. Here the absorp- 
tion and scattering coefficients of the radiation by the medium, which 
is taken to be a real gas, are considered to be independent of the fre- 
quency of the radiation. Eddington's assumption is used as the angutar 
approximation. The system of equations thus obtained is applied in 
order to investigate the structure of a stationary shock wave of ampli~ 
rude greater than the critical. A qualitative picture is obtained of the 
variation of hydrodynamic and radiation characteristics over the entire 
shock wave zone. It is found that in the case when scattering predomi- 
nates over absorption the radiation acts on the gas like a non-transpar- 
ent piston and in doing so limits the radiation damping of the shock 
wave. 

Considerable velocities in the macroscopic motion 
of high temperature gas and large radiation energy 

densities are often characteristic in astrophysical phe- 

nomena. The relativistieally covariant transfer equa- 
tion which takes these effects into account in the gen- 

eral case was first obtained by Thomas [I]. In the case 

of one dimensional motion in a fixed system of coordi- 

nates it has the form 

B v 

+ E d~i ~,Q (~t, v, ~l, vl) I,,, (~l) dvl ,  
- -1  0 

i 
L = 0 ( i  - -  ~ ) ,  0 v " v -  ~'~ ( i )  

s c a t t e r i n g ) ,  ce 0 and ~0 a r e  t aken  to be  g i v e n  f u n c -  
t i ons  of  g a s  d e n s i t y  and t e m p e r a t u r e  d e t e r m i n e d  by 
p a r t i c u l a r  c o n d i t i o n s .  We s h a l l  f u r t h e r  a s s u m e  tha t  
t he  s c a t t e r i n g  i s  c o h e r e n t ,  i . e . ,  i t  o c c u r s  w i thou t  a 
c h a n g e  of  f r e q u e n c y ,  and i s  i s o t r o p i c .  The  r e - r a d i a -  
t i on  func t ion  in t he  p a r t i c u l a r  s y s t e m  of c o o r d i n a t e s  
m a y  then  be  w r i t t e n  in the  f o r m  

9. = (~o, ~o, ~lo, ho) = 6 (% - -  ho) .  

In Eq .  (1) we  s h a l l  t r a n s f o r m  the r e - r a d i a t i o n  t e r m  
in a c c o r d a n c e  wi th  the  r u l e s  (2). S ince  vl0 = vlL1 and 

v0 = vL,  t hen  

and c o n s e q u e n t l y  we h a v e  in the f ixed  s y s t e m  of c o o r -  
d i n a t e s  

zoL t  / L 
~,9. (~, ~, t~, '~,) = ~ 5 [ ~ l - -  vZi?). (3) 

U s i n g  (3) in Eq .  (1), we ob t a in  the t r a n s f e r  e q u a -  

t ion  f o r  the  s p e c t r a l  i n t e n s i t y  of  the  r a d i a t i o n :  

+ ~ -~x) I~ - -  (ao + %) .[,,L + 

1 

- -1  

(4) 

H e r e  I v i s  t he  s p e c t r a l  i n t e n s i t y  of  r a d i a t i o n  o f  f r e -  
q u e n c y  v; p i s  the  c o s i n e  of  t he  ang l e  b e t w e e n  the  d i -  
r e e t i o n  of  m o t i o n  of  t he  gas  and tha t  of  e m i s s i o n  of  t he  

r a d i a t i o n ;  c~v0, cry0 a r e  l i n e a r  c o e f f i c i e n t s  o f  r a d i a t i o n  
a b s o r p t i o n  and s c a t t e r i n g  fo r  a gas  a t  r e s t ;  By0 i s  
P l a n e k ' s  func t ion  w h i c h  a p p e a r s  a s  the  r e s u l t  o f  loon!  

t h e r m o d y n a m i c  e q u i l i b r i u m  b e i n g  a s s u m e d ;  12(/4 v, 
Pl, vl) i s  the  r e - e m i s s i o n  func t ion ;  /3 i s  t he  r a t i o  of  

t he  gas  v e l o c i t y  to  the  v e l o c i t y  of  l igh t .  Q u a n t i t i e s  in 
t h e  f ixed  and p a r t i c u l a r  s y s t e m s  of  c o o r d i n a t e s  a r e  

c o n n e c t e d  by  t h e  r e l a t i o n s h i p s  [1, 2] 

vo dr0 d~t : -  L ~dg0, v := T '  dv L ' 

o;~ - awL, ~,~ - - -  ~v,,L, 

Lx ,- 0 (i - -  ~9,). (2) 

We s h a l l  now a s s u m e  tha t  the  c o e f f i c i e n t s  o f  r a d i a -  

t i on  a b s o r p t i o n  and s c a t t e r i n g  fo r  a s t a t i o n a r y  gas  a r e  

i n d e p e n d e n t  of  the  f r e q u e n c y ,  i . e . ,  av0  = oz 0 and a v  o = 

= (r 0 (the a p p r o x i m a t i o n  of  g r e y - b o d y  wi th  T h o m s o n  

I n t e g r a t i n g  (4) wi th  r e s p e c t  to f r e q u e n c y  v and p e r -  

f o r m i n g  the  s u b s t i t u t i o n  v L / L 1  = v '  in the  l a s t  t e r m ,  
we  ob t a in  the  t r a n s f e r  equa t i on  f o r  the  i n t e g r a l  i n t e n -  
s i t y  of  r a d i a t i o n  I in the f o r m  

[ a Bo 

1 

+,• 

--1 

(~ s n  
Bo = ~ Te 4, a - -  c~o-I zo ' 

• ~o+Zo (cr + •  

oo 

dr  = e (ao + % )  dt, d~ = (ao + %) dx,  I = f L d v .  (5) 
o 

H e r e  a i s  the  S t e f a n - B o l t z m a n n  c o n s t a n t ,  To is  the  

s t a t i o n a r y  gas  t e m p e r a t u r e .  
F r o m  th is  e q u a t i o n  i t  i s  no t  d i f f i c u l t  to ob t a in  a s y s -  

t e m  of e q u a t i o n s  f o r  the  a n g u l a r  m o m e n t a  of  the  i n t e n -  

s i t y  I, c o m p o n e n t s  of  the  e n e r g y - m o m e n t u m  t e n s o r  of  
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the radiat ion.  In o rde r  to do this we follow [3] and in-  
troduce the symbols :  

4n [ d~t, S : In 4.~ i~t~ dp~, J ~ f~jly_~ [~  d~t, h - - -  i)oD., c 
--1 --1 --1 

T : To  6 t  8"~ T c ~  % ,  -:~?r . (6) 

Here Po, D, Too a re  ce r ta in  constants  having d imen-  
s ions  of densi ty ,  velocity,  and t e m p e r a t u r e  r e s p e c -  
t ively,  J and K are  the d imens ion l e s s  rad ia t ion  energy 
densi ty  and radia t ion p r e s s u r e  (diagonalized t ensor  of 
radia t ion momentum dens i ty  flux) in uni ts  PoD 2, and S 
is the d imens ion l e s s  dens i ty  of the rad ia t ion  energy  
flux in uni ts  poD2e. 

We shal l  apply the in tegra l  opera to r s  

1 1 

4n l 4.~ ~3 polr~ ( . . . )  d~x, r,,,T) c (' ' ") ~t d~ 
- - !  --1 

to Eq. (5). 

Using the i n t eg ra l s  

1 1 1 
t l d[l t ([~t t I Y - ~  7 

--1 --1 - - i  

we obtain  

(),l OS 
~-~ § ~ = o ~ { ~ [ ~ ( j  + / , : ) - -  

- s ( i  +r#)] +o~ [Bo - - J+2~3X- -~2 (Bo+h ) ] } ,  
as OK 
o-%- + ~ = ~ {[~ ( :  + K)  - -  

- -  S (t + ~2)1 + a~ [ B o - - J  + 2~S - -  # (Bo + / i ) ] } .  (7) 

The r igh t  s ides  of these  equat ions become phys ica l ly  
c l ea r  if  we use the t enso r  r e l a t i ons  between compo-  
nents  of the e n e r g y - m o m e n t u m  t e n s o r  in va r i ou s  coor -  
dinate  s y s t e m s  [2]: 

Jo = 02 (J--2~JS -~ p2K), 

S o = 0 2 [ s ( t + p 2 ) - p  ( j + K ) ] ,  
Ko = 02 (K--2~S + ~ 3). (8) 

Then Eqs .  (7) a s s u m e  the form 

OJ OS 
0~ @ ~ = 0 [ - -  ~So ~- a (Bo - -  Yo)], 

OS OK 
O~-+ ~- (=  01-- S0 + ~ (Bo-- J0)l. (9) 

If we neglec t  the r e l a t i v i s t i c  dependence of t e m p e r -  
a ture ,  we may wr i t e  B 0 = 361T 4. If the t e m p e r a t u r e  Too 
is  unders tood  to be the t e m p e r a t u r e  for which the re  is  
e q u i l i b r i u m  between the rad ia t ion  and the gas, then the 
e q u i l i b r i u m  condi t ion in  the c h a r a c t e r i s t i c  coordina te  
s y s t e m  is S o = 0; J0 = 361, K0 = 51, and the c o r r e s p o n d -  
ing equ i l i b r i um condi t ions  in the fixed coordina te  s y s -  
t em  is  accord ing  to (8) 

+T), x=;, 

Sys tem (9) is  not c losed.  In o rde r  to c lose  i t  we 
m u s t  postula te  an addi t ional  r e l a t i on  between the r a -  

diation quant i t ies .  For  a gas which is  at r e s t  this r e -  
la t ion is taken to be J0 = 3K0, the f ami l i a r  Eddington 
approximat ion.  This  is an extension to non - e qu i l i b r i um 
condit ions of a r e l a t ion  which is s t r i c t ly  valid only in 
equ i l ib r ium condi t ions.  We may take the r e l a t ion  

:~ + 3-' ( 1 1 )  J=h~:~; , 

which comes  f rom the equ i l ib r ium values  (10), as a 
s i m i l a r  r e l a t ion  in the fixed coordinate  sys tem.  

Thus Eqs. (7) and (11) are  the r e l a t i v i s t i c  equa-  
t ions  for rad ia t ion  in Eddington 's  modified approx ima-  
t ion. In the n o n - r e l a t i v i s t i c  fo rm these equat ions are  

3 OK ~( -~- ~ = a 13 (6tT 4 - -  h) - -  2~ (4~h- - -  S)] + ~ (4~K - -  S), 

oso~_ ._~ .0~_0K = 3a~ (61 T4 --h-)  + (4~K - -  S) (12) 

with the boundary  condit ions 

K = 6 ,  S = 4~6~. (13) 

T e r m s  of the o rde r  fi 2 are  kept in the f i r s t  of these 
equat ions in o rder  that the given boundary  condit ions 
(13) should be sa t is f ied exactly.  

We shal l  apply the sys t em of equat ions which we 
have obtained to the p rob lem of the s t ruc tu re  of the 
f ront  of a s t rong  s t a t ionary  shock wave. Let the m e -  
dium in which the shock wave is  moving with a con-  
s tant  ve loci ty  D be an inf ini te  layer  of ideal  gas of 
dens i ty  P0, with an adiabat ic  index 1 < T < 2 (to allow 
for the effective ioniza t ion  of the mat ter ) ,  and with a 
zero  in i t ia l  t e m p e r a t u r e .  After  the passage  of the 
shock wave the gas has a f inal  t e m p e r a t u r e  Too and 
dens i ty  Pl. Thus the quant i t ies  en te r ing  into the def- 
in i t ion  (6) a re  given a c l ea r  phys ica l  meaning .  The 
in i t i a l  p a r a m e t e r s  of the gas co r re spond  to the opti-  
cal  coordinate  ~ = +% the f inal  p a r a m e t e r s  to the co-  
ord ina te  ~ = - ~ .  The d iscont inu i ty  is s i tuated in the 
cen te r  of the coordinate  sy s t em ~ = 0. 

We in t roduce  the defini t ions 

po A -- BT1 ~-- t 
1] = ~ - ,  ~tD2 , r -  T - F t '  

q = c '  G = r  ~ - + t  , (14) 

where  p is the dens i ty  of the gas, R is the u n i v e r s a l  
gas constant ,  ~ is the mo l e c u l a r  weight of the gas.  
Then  in the accepted notat ion the f i r s t  i n t e g r a l s  of 
r ad ia t ion  hydrodynamics  have the fo rm [3] 

= - -qq ,  

G = A T  t+r r ~- q~. (15) 

Using these  r e l a t i ons  the sys t em of s t a t iona ry  r a d i -  
a t ion Eqs.  (12) a s s u m e s  the fo rm 

dG 
d~ q + + 4 <  

dK.  _ q - -  - -  <16) 
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T h e  b o u n d a r y  c o n d i t i o n s  f o r  s y s t e m  (16) h a v e  t h e  

f o r m  

K = T = 0 ,  ~ 1 = 1 ,  G =  r, ~ = - ~ c ~ ,  
K = 6 i, T = t ,  vl = ql, G --  r ( i  - -46 i~h ) ,  

= - ~ .  ( i 7 )  

The properties of system (16) for the case ct = 1 (pure absorption 
without scattering) have been investigated in derail in a paper by 
Morozov.* 

It is peculiar to this case that in the phase planes (G, K) or (% 7) 
the treatment gives us the absorption coefficient ct 0 as a concrete func- 
tion of the gas parameters. Actually the nonlinear equation to be inves- 
tigated in the phase plane (G, K) has the form 

dG r 3uP {7) @ q27 (2ct-- 1) Q (~1) 
dK q~ 3~7P (7) --  g (n) ' 

a 
P (7) = K --  5,T a, Q (7) = -~- --  I 4- 4K 7 . (18) 

In the case a = 1 the properties of the absorbing medium enter 
only into the definition of the optical thickness g. It is convenient 
to carry out the investigation in the phase space (T, ~). Using Eqs. 
(15) we arrive at the relation 

Setting (18) in this equation we obtain 

dT 
[3a (1 -- 2~1 --  1/~K) (i -~- q272 ) P (7) ~ dq A 

4- qSq [ (2a  - -  i )  (t  - -  27 - -  alsK) - -  7]  Q ( 7 ) ~ •  

It is clear from this that if ct is equal to or of the order of 1, then 
for the condition K >> 6i T~ (state of strong non-equilibrium) we may 
neglect terms of the order of qZ and the resulting equation has as its 
first integral the expression (AT + ~2)1,~ ; const, According to (15) 
this is just the condition of constant radiation pressure. Consequently 
in conditions far removed from equilibrium, the integral curve should 
be close to the curve of constant K [4]. However, the state of the gas 
changes between the bounding points for equilibrium determined by 
conditions (17). Thus the change of radiation pressure K from 0 to 5 i 
should occur close to the curve of radiative equilibrium K = 51T4. In 
the plane (T, ~) this equation has the form 

A 2(i --'i) 
T a 4 - 4 m T - - 3 n = 0 ,  m =  26]t1' n - -  38~ . (21) 

The solution of this equation is 

:,;_..~2_t~ 1 / , ~ , ~  ,~2_ V.~,~_-, ,~s . (22) 

A qualitative investigation of the singular points of (17) shows that 
for all possible parameters of the problem the initial point remains a 

saddle point. 
If the inequality 

A > 7 2 ~ ( t  r) (I [- r)-~ 

is fulfilled the final equilibrium point is also a saddle. Physically 

this inequality means that at the final equilibrium point the gas ve- 

locity is less than the adiabatic velocity of sound. In this case a dis- 
continuous solution should result. Before the discontinuity the integral 
curve lies close to the curve of radiative equilibrium (22), practically 
coinciding with it (to the order of q2), while behind the shock the 
integral curve lies close to the curve of constant radiation pressure 
equal to the limiting value 6 i. It follows from (15) that this curve 
is given by the equation 

A T = ~1 (1--~-- i/2 5i). (23) 

It is clear from here that the temperature behind the shock is 
higher than the temperature at the final point and may attain a maxi- 

mum value Tm at the point 71m, 

~ - 6 1 )  , I ( t - - t  6 / _ -2- 11, (24) 
t / t - -  t 2 

7m = =)- 

if this point lies in the region behind the shock. 
The radiation flux in the region after and before the shock is de- 

termined respectively by the expressions 

a = 7  [(t + r) ( t - -  1A 51) --  ~], 

G = 7 [(1 4- r) (i--i/2 bi T4)~I) .  (25) 

Here T(~) is calculated from (22). 
If we turn to the initial equations (16) we see that the optical 

thickness of the equilibrium zone before the shock is of the order 
q/6i, i . e . ,  this zone is almost transparent and the temperature peak 
behind the shock is optically very thin. 

As mentioned above such a picture of the behavior of the integral 
curves is obtained for c~ of the order of unity. However it follows 

from Eqs. (18) that the picture will remain the same for small values 
of ct of the order q. Here the departure of the integral curves from the 
curves of radiative equilibrium and constant K will also be of the order 
of q (more accurately, the order of departure will be equal to qS/c0. 

I n  t h e  c a s e  o f  v e r y  s m a l l  c~ (i. e . ,  i n  c o n d i t i o n s  

w h e n  t h e r e  i s  a p p r e c i a b l y  m o r e  s c a t t e r i n g  t h a n  a b s o r p -  

t i o n ,  w h i c h  o c c u r s  f o r  v e r y  h i g h  t e m p e r a t u r e s )  t h e  

b e h a v i o r  o f  t h e  i n t e g r a l  l i n e s  p r e s e n t s  q u i t e  a n o t h e r  

picture. 

First of all the case c~ = 0 (pure scattering) is 
rather special since in this case the initial nonlinear 

equation has no singular points corresponding to 

points of equilibrium. For c~ = 0 Eq. (20) may be inte- 

grated exactly: 

2r 

T = const.~, r . . . .  Cql-~. (26) 

This solution corresponds to adiabatic variation 

of the thermodynamic parameters of the gas. Here 

the radiation becomes independent of the material 

and acts upon it like a piston. On account of the scat- 

tering the radiation momentum is transferred directly 

to the medium, and thus the scattering is a factor hin- 

dering the radiation damping of the shock wave. 

In the region where scattering predominates the 

behavior of the quantities is described by the equa- 

tions 

i I§ 
K = 2  t - - , ] - - C q  i - ~ [ ,  

1J-r -r 

6 = q  (1+ ,9C~ r-~+nrl (27) 
*Yu. I, Morozov, Candidate's dissertation: Some Nonlinear Prob- 

lems of Relativistic Radiation Hydrodynamics, Moscow, 19(;5. and Eq. (26). 
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H o w e v e r ,  this region cannot include a point of f i -  
nite equi l ib r ium.  Qual i ta t ive  analys is  shows that in a 
sma l l  neighborhood of th is  point the in t eg ra l  curve  
l ies  c lose  to the cu rve  K = S 1 ,  as in the case  ~ ~ 1, 
and only a f t e rwa rds  at d i s tances  of the o r d e r  of q2 
does it  approach the pure  s c a t t e r i n g  cu rve .  If the d i s -  
continuous solution is r ea l i zed ,  i .e . ,  the inequal i ty  

A > ~ h  e( t  --  r) (1 -t- r) -~ 

is sa t i s f ied ,  then reg ions  of pure  s ca t t e r i ng  cannot 
be adjacent  to both s ides  of the discontinuity,  s ince  
the condit ion for continuity of G and K at the shock 
give only a continuous solut ion in this  case .  

If we examine  (20) it  is not diff icult  to obtain an 
equation for this ca se  which a p p r o x i m a t e l y  d e s c r i b e s  
the reg ion  adjacent  to the shock on the side of the un- 
pe r tu rbed  gas, for the case  when s c a t t e r i n g  p r e d o m i -  
nates  (~ << q2). Th is  reg ion  is de sc r ibed  by the equa-  
t ion 

G / r --  i -4- 4K~l = O (a / q~), (28) 

and consequent ly  quant i t ies  in this reg ion  sa t i s fy  the 
equat ions  

r (t - -  0) (t - -  7~1), K =  2 (l -- n) (~ -- r) AT -- 1--7~ ~ l - -7r  ' 

G = 7. [t - -  8 (i -- ~) (n -- r) I --7r ]" (29) 

It should be noted that in the regions of pure scat- 
tering lying on either side of the shock these quantities 
vary in quite different ways. In fact it follows from 
Eq. (20) that for these regions 

dG - -  r ~ .  ( 3 0 )  
dK 

Using Eqs .  (15), we may  ea s i l y  obtain 

- = -  dK  (AT '+r (1_  c? 

d~l ~1 l - - r - - ~ 1 2  = 2r~l t ~ 7  . (31) 

H e r e  c s i s  the adiabat ic  ve loc i ty  of sound, v is  the 
gas ve loc i ty .  It fol lows f r o m  the condi t ions  of  shock 
s tab i l i ty  that  the r e l a t i o n  v 2 > C2s is  val id  before  the 
shock ( superson ic  flow), while  behind the shock v z < 
< C 2 . 

Thus it follows fl 'om fo rmulas  (31) that in the r e -  
gion of pure s ca t t e r i ng  the inequal i t ies  dK/d~ < 0, 
dG/d~ > 0 a re  val id in front of the shock, while those 
for the r eg ion  behind the shock are  dK/dT? > 0, dG/  
/d~ < O. 

When a l l  the regions mentioned above are matched 
we obtain an approx imate  solut ion for the p rob lem of 
the shock-wave  s t r u c t u r e  with a suff ic ient ly  high de- 
g ree  of accu racy .  

In my paper  which I r e f e r  to on page 29, the s t r u c -  
ture  of a s t rong  shock wave was inves t iga ted  fo r  the 
s ta t ionary  case  of propagat ion  through a plane l ayer  
of d e c r e a s i n g  densi ty.  It was shown that  in the ease  of 
pure  absorp t ion  r ad ia t ive  effects  h inder  the bui lding 

up of shock wave energy ,  and may not only check an 
un l imi ted  i n c r e a s e  of gas t e m p e r a t u r e  and ve loc i ty  at 
the shock as it approaches  the boundary of the reg ion ,  
but may even lead to a d e c r e a s e  of these  quant i t ies  as 

the boundary is approached.  

Our t r e a t m e n t  of the effect  of rad ia t ion  s ca t t e r i ng  
on shock wave s t r u c t u r e  show that it is  absolute ly  e s -  
sent ia l  to take s ca t t e r i ng  into account in c a s e s  of this 
type, and this  may  lead to a d i f ferent  qual i ta t ive  p ic -  
t u re  s ince  rad ia t ive  braking of the shock wave wil l  be 
suppressed .  The author is  g ra te fu l  to V. S. Imshen-  
nik for his  i n t e r e s t  and par t i c ipa t ion  in the work.  
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