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THOMSON SCATTERING TAKEN INTO ACCOUNT IN THE RELATIVISTIC
TRANSFER EQUATIONS FOR A GREY-BODY AND STATIONARY SHOCK

WAVE STRUCTURE

Yu. I. Morozov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,

Exact relativistic transfer equations for components of the energy-
momentum tensor of the radiation are obtained on the basis of the
relativistically covariant radiation transfer equation. Here the absorp-
tion and scattering coefficients of the radiation by the medium, which
is taken to be a real gas, are considered to be independent of the fre~
quency of the radiation. Eddington's assumption is used as the angular
approximation. The system of equations thus obtained is applied in
order to investigate the structure of a stationary shock wave of ampli-
tude greater than the critical, A qualitative picture is obtained of the
variation of hydrodynamic and radiation characteristics over the entire
shock wave zone. It is found that in the case when scattering predomi-
nates over absorption the radiation acts on the gas like a non-transpai-
ent piston and in doing so limits the radiation damping of the shock
wave.

Considerable velocities in the macroscopic motion
of high temperature gas and large radiation energy
densities are often characteristic in astrophysical phe-
nomena. The relativistically covariant transfer equa-
tion which takes these effects into account in the gen-
eral case was first obtained by Thomas [1]. In the case
of one dimensional motion in a fixed system of coordi-
nates it has the form
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Here I, is the spectral intensity of radiation of fre-
quency v; u is the cosine of the angle between the di-
rection of motion of the gas and that of emission of the
radiation; o , o, are linear coefficients of radiation
absorption and scattering for a gas at rest; Byo is
Planck's function which appears as the result of local
thermodynamic equilibrium being assumed; Q{u, v,
Ly, vy)is the re-emission function; g is the ratio of
the gas velocity to the velocity of light. Quantities in
the fixed and particular systems of coordinates are
connected by the relationghips [1, 2]
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We shall now assume that the coefficients of radia-
tion absorption and scattering for a stationary gas are
independent of the frequency, i.e., Ay = o and Oy, =
= gp {the approximation of grey-body with Thomson
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scattering), ay and oy are taken to be given func-
tions of gas density and temperature determined hy
particular conditions. We shall further assume that
the scattering is coherent, i.e., it occurs without a
change of frequency, and is isotropic. The re-radia-
tion function in the particular system of coordinates
may then be written in the form

Q = (Mg, Vo, By V1o) = 8 (vg — Vig).

In Eq. (1) we shall transform the re-radiation term
in accordance with the rules (2). Since vy = vy1L; and
vy = vL, then
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and consequently we have in the fixed system of coar-
dinates
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Using (3) in Eq. (1), we obtain the transfer equa-
tion for the spectral intensity of the radiation:
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Integrating (4) with respect to frequency v and per-
forming the substitution vL/L; = v' in the last term,
we obtain the transfer equation for the integral inten-
sity of radiation I in the form
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Here o is the Stefan-Boltzmann constant, T is the
stationary gas temperature.

From this equation it is not difficult to obtain a sys~
tem of equations for the angular momenta of the inten-
sity I, components of the energy-momentum tensor of
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the radiation. In order to do this we follow [3] and in~
troduce the symbols:
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Here py, D, Ty are certain constants having dimen-
sions of density, velocity, and temperature respec-
tively, J and K are the dimensionless radiation energy
density and radiation pressure (diagonalized tensor of
radiation momentum density flux) in units pODZ, and S
is the dimensionless density of the radiation energy
flux in units pyD?e.

We shall apply the integral operators
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Using the integrals
18 g 10 d 1 S ud
N S W O U T
N B=w oo =6 )=
-1 —1 —1
we obtain

a7

as 5 .
(] TS SR
— S (5 B+ alBo—T + 285 — B (B4 K)1},
Tt e =B+ K)—
— S (14 B+ of [By— -+ 238 — B (Bo + K)I}. (7)

The right sides of these equations become physically
clear if we use the tensor relations between compo-
nents of the energy-momentum tensor in various coor-
dinate systems [2]:
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Then Eqgs. (7) assume the form
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If we neglect the relativistic dependence of temper-
ature, we may write By = 36,T*, If the temperature T,
is understood to be the temperature for which there is
equilibrium between the radiation and the gas, then the
equilibrium condition in the characteristic coordinate
system is §; = 0; J, = 364, K; = 64, and the correspond-
ing equilibrium conditions in the fixed coordinate sys-
tem is according to (8)
36;_(1+ B_2> S — 4B
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System (9) is not closed. In order to close it we
must postulate an additional relation between the ra-

diation quantities. For a gas which is at rest this re-
lation is taken to be J, = 3K,, the familiar Eddington
approximation. This is an extension to non-equilibrium
conditions of a relation which is strictly valid only in
equilibrium conditions. We may take the relation

34 3
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which comes from the equilibrium values (10), as a
similar relation in the fixed coordinate system.

Thus Egs. (7) and (11) are the relativistic equa-
tions for radiation in Eddington's modified approxima-

tion. In the non-relativistic form these equations are
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Terms of the order 8% are kept in the first of these
equations in order that the given boundary conditions
(13) should be satisfied exactly.

We shall apply the system of equations which we
have obtained to the problem of the structure of the
front of a strong stationary shock wave. Let the me-
dium in which the shock wave is moving with a con-
stant velocity D be an infinite layer of ideal gas of
density py, with an adiabatic index 1 < y< 2 (to allow
for the effective ionization of the matter), and with a
zero initial temperature. After the passage of the
shock wave the gas has a final temperature T and
density p;. Thus the quantities entering into the def-
inition (6) are given a clear physical meaning. The
initial parameters of the gas correspond to the opti-
cal coordinate £ = +«, the final parameters to the co-
ordinate £ = —e, The discontinuity is situated in the
center of the coordinate system £ = 0,

We introduce the definitions
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where p is the density of the gas, R is the universal
gas constant, p is the molecular weight of the gas.
Then in the accepted notation the first integrals of
radiation hydrodynamics have the form [3]
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Using these relations the system of stationary radi-
ation Eqgs. (12) assumes the form
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The boundary conditions for system (16) have the
form

: 1']:17 G—‘:T', E=+OO,
T=1, g=mn, G=r{1—145n),

E= — oo. 17

The properties of system (16) for the case o = 1 (pure absorption
without scattering) have been investigated in detail in a paper by
Morozov.*

It is peculiar to this case that in the phase planes (G, K) or (T, )
the treatment gives us the absorption coefficient oy as a concrete funce
tion of the gas parameters. Actually the nonlinear equation to be inves-
tigated in the phase plane (G, K) has the form
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In the case o =1 the properties of the absorbing medium enter
only into the definition of the optical thickness §. It is convenient
to carry out the investigation in the phase space (T, n). Using Eqs.
(15) we arrive at the relation
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Setring (18) in this equation we obtain
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It is clear from this that if o is equal to or of the order of 1, then
for the condition K > 61T4 (state of strong non-equilibrium) we may
neglect terms of the order of q2 and the resulting equation has as its
first integral the expression (AT + nz)/n = const. According to (15)
this is just the condition of constant radiation pressure. Consequently
in condirions far removed from equilibrium, the integral curve should
be close to the curve of constant K [4]. However, the state of the gas
changes between the bounding points for equilibrium determined by
conditions (17). Thus the change of radiation pressure K from 0 to §;
should occur close to the curve of radiative equilibrium K = 51T4, In
the plane (T, 7) this equation has the form
A 2 (1 -— T])
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The solution of this equation is
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A qualitative investigation of the singular points of (17) shows that
for all possible parameters of the problem the initial point remains a
saddle point,

If the inequality

A>nh () (AT

is fulfilled the final equilibrium point is also a saddle. Physically
this inequality means that at the final equilibrium point the gas ve-

*Yu. 1. Morozov, Candidate’s dissertation: Some Nonlinear Prob~
lems of Relativistic Radiation Hydrodynamics, Moscow, 13865.

locity is less than the adiabatic velocity of sound. In this case a dis~
continuous solution should result, Before the discontinuity the integral
curve lies close to the curve of radiative equilibsium (22), practically
coinciding with it (to the order of qz), while behind the shock the
integral curve lies close 1o the curve of constant radiation pressure
equal to the limiting value 8;. It follows from (15) that this curve

is given by the equation

AT =1 (1-m—1s 6. (23)

It is clear from here that the temperature behind the shock is
higher than the temperature at the final point and may attain a maxi-
mum value Ty at the point nm,

1 1 2 1 i
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if this point lies in the region behind the shock.

The radiation flux in the region after and before the shock is de-
termined respectively by the expressions

G=n [(1+ 11— 01) —nl
G=nll+ {136 TH—n]. (25}

Here T(7) is calculated from (22).

If we turn to the initial equations (16) we see that the optical
thickness of the equilibrium zone before the shock is of the order
q/8;, i.e., this zone is almost transparent and the temperature peak
behind the shock is optically very thin,

As mentioned above such a picture of the behavior of the integral
curves is obtained for o of the order of unity. However it follows
from Eqs. (18) that the picture will remain the same for small values
of o of the order q. Here the departure of the integral curves from the
curves of radiative equilibrium and constant K will also be of the order
of q (more accurately, the order of departure will be equal to qz/ o).

In the case of very small o (i.e., in conditions
when there is appreciably more scattering than absorp-
tion, which occurs for very high temperatures) the
behavior of the integral lines presents quite another
picture.

First of all the case o = 0 (pure scattering) is
rather special since in this case the initial nonlinear
equation has no singular points corresponding to
points of equilibrium. For o = 0 Eq. (20) may be inte-
grated exactly:

ar
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This solution corresponds to adiabatic variation
of the thermodynamic parameters of the gas, Here
the radiation becomes independent of the material
and acts upon it like a piston. On account of the scat-
tering the radiation momentum is transferred directly
to the medium, and thus the scattering is a factor hin-
dering the radiation damping of the shock wave,

In the region where scattering predominates the
behavior of the quantities is described by the equa-
tions
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and Eq, (26).
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However, this region cannot include a point of fi-
nite equilibrium. Qualitative analysis shows that in a
small neighborhood of this point the integral curve
lies close to the curve K = 64, as in the case o =~ 1,
and only afterwards at distances of the order of g?
does it approach the pure scattering curve. If the dis-
continuous solution is realized, i.e., the inequality

AP (1= 1) [+ )

is satisfied, then regions of pure scattering cannot
be adjacent to both sides of the discontinuity, since
the condition for continuity of G and X at the shock
give only a continuous solution in this case.

If we examine (20) it is not difficult to obtain an
equation for this case which approximately describes
the region adjacent to the shock on the side of the un~
perturbed gas, for the case when scattering predomi-
nates (@ «< g%, This region is described by the equa-
tion

G/r—14+4Kn=0 (a/¢?, (28)

and consequently quantities in this region satisfy the
equations
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It should be noted that in the regions of pure scat-
tering lying on either side of the shock these quantities
vary in quite different ways. In fact it follows from
Eq. (20) that for these regions

dG .
%= rm. (30)
Using Egs. (15), we may easily obtain
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Here cg is the adiabatic velocity of sound, v is the
gas velocity. It follows from the conditions of shock
stability that the relation v? > cé is valid before the
shock (supersonic flow), while behind the shock v* <

2
< Cg.

Thus it follows from formulas (31) that in the re-
gion of pure scattering the inequalities dK/dn < 0,
dG/dn > 0 are valid in front of the shock, while those
for the region behind the shock are dK/dn > 0, dG/
/dn < 0,

When all the regions mentioned above are matched
we obtain an approximate solution for the problem of
the shock-wave structure with a sufficiently high de-
gree of accuracy.

In my paper which I refer to on page 29, the struc-
ture of a strong shock wave was investigated for the
stationary case of propagation through a plane layer
of decreasing density. It was shown that in the case of
pure absorption radiative effects hinder the building
up of shock wave energy, and may not only check an
unlimited increase of gas temperature and velocity at
the shock as it approaches the boundary of the region,
but may even lead to a decrease of these quantities as
the boundary is approached.

Our treatment of the effect of radiation scattering
on shock wave structure show that it is absolutely es-
sential to take scattering into account in cases of this
type, and this may lead to a different qualitative pic-
ture since radiative braking of the shock wave will be
suppressed. The author is grateful to V. S. Imshen-
nik for his interest and participation in the work.
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